C

A 3T V¥
ao S



topics

* A program to shuffle cards
* With arrays
* With collections

e Action<> and Func<>
* Use instead of defining delegate

* Lambda Expressions



Card Game:
enumeration information

enum Value

{
Two, Three, Four, Five, Six, Seven, Eight,
Nine, Ten, Jack, Queen, King, Ace
}
enum Suit
{

Clubs, Diamonds, Hearts, Spades



Card Game:
calsses

* PlayingCard
* Pack

* Hand

* Shuffle cards



Action<> and Func<>

» Action is a delegate (pointer) to a method, that takes zero, one or
more input parameters, but does not return anything.

* Func is a delegate (pointer) to a method, that takes zero, one or more
input parameters, and returns a value (or reference).



lambda expressions

* A lambda expression is an expression of any of the following two
forms:

* (input-parameters) => expression
* (input-parameters) => { <sequence-of-statements> }

* Any lambda expression can be converted to a delegate type.

* If a lambda expression doesn't return a value, it can be converted to
one of the Action delegate types; otherwise, it can be converted to
one of the Func delegate typ



lambda expressions
simple sample

* Func<int, int, bool> testForEquality = (x, y) => x ==;

* Action<string> greet = name =>

{
string greeting = $"Hello {name}!";
Console .WriteLine(greeting);

Iy

greet("World");



example of Action

* Testd
* Convert previous example! (test2 and test3)



